Extensions 1→N→G→Q→1 with N=C2 and Q=D126C22

Direct product G=N×Q with N=C2 and Q=D126C22
dρLabelID
C2×D126C2248C2xD12:6C2^2192,1352


Non-split extensions G=N.Q with N=C2 and Q=D126C22
extensionφ:Q→Aut NdρLabelID
C2.1(D126C22) = C4⋊C4.225D6central extension (φ=1)96C2.1(D12:6C2^2)192,523
C2.2(D126C22) = C4○D12⋊C4central extension (φ=1)96C2.2(D12:6C2^2)192,525
C2.3(D126C22) = C42.48D6central extension (φ=1)96C2.3(D12:6C2^2)192,573
C2.4(D126C22) = C42.51D6central extension (φ=1)96C2.4(D12:6C2^2)192,577
C2.5(D126C22) = (C6×D4)⋊6C4central extension (φ=1)48C2.5(D12:6C2^2)192,774
C2.6(D126C22) = C4⋊C4.228D6central stem extension (φ=1)96C2.6(D12:6C2^2)192,527
C2.7(D126C22) = C4⋊C4.230D6central stem extension (φ=1)96C2.7(D12:6C2^2)192,529
C2.8(D126C22) = D4.3Dic6central stem extension (φ=1)96C2.8(D12:6C2^2)192,568
C2.9(D126C22) = D4.1D12central stem extension (φ=1)96C2.9(D12:6C2^2)192,575
C2.10(D126C22) = C6.Q16⋊C2central stem extension (φ=1)96C2.10(D12:6C2^2)192,594
C2.11(D126C22) = D1217D4central stem extension (φ=1)96C2.11(D12:6C2^2)192,596
C2.12(D126C22) = C4⋊D4⋊S3central stem extension (φ=1)96C2.12(D12:6C2^2)192,598
C2.13(D126C22) = C3⋊C85D4central stem extension (φ=1)96C2.13(D12:6C2^2)192,601
C2.14(D126C22) = C42.72D6central stem extension (φ=1)96C2.14(D12:6C2^2)192,630
C2.15(D126C22) = C122D8central stem extension (φ=1)96C2.15(D12:6C2^2)192,631
C2.16(D126C22) = C42.74D6central stem extension (φ=1)96C2.16(D12:6C2^2)192,633
C2.17(D126C22) = Dic69D4central stem extension (φ=1)96C2.17(D12:6C2^2)192,634
C2.18(D126C22) = C42.76D6central stem extension (φ=1)192C2.18(D12:6C2^2)192,640
C2.19(D126C22) = D125Q8central stem extension (φ=1)96C2.19(D12:6C2^2)192,643
C2.20(D126C22) = C42.82D6central stem extension (φ=1)96C2.20(D12:6C2^2)192,648
C2.21(D126C22) = Dic65Q8central stem extension (φ=1)192C2.21(D12:6C2^2)192,650
C2.22(D126C22) = (C2×C6)⋊8D8central stem extension (φ=1)48C2.22(D12:6C2^2)192,776
C2.23(D126C22) = (C3×D4).31D4central stem extension (φ=1)48C2.23(D12:6C2^2)192,777

׿
×
𝔽